Mining Fuzzy Weighted Browsing Patterns from Time Duration and with Linguistic Thresholds
نویسنده
چکیده
World-wide-web applications have grown very rapidly and have made a significant impact on computer systems. Among them, web browsing for useful information may be most commonly seen. Due to its tremendous amounts of use, efficient and effective web retrieval has become a very important research topic in this field. Techniques of web mining have thus been requested and developed to achieve this purpose. In this research, a new fuzzy weighted web-mining algorithm is proposed, which can process web-server logs to discover useful users’ browsing behaviors from the time durations of the paged browsed. Since the time durations are numeric, fuzzy concepts are used here to process them and to form linguistic terms. Besides, different web pages may have different importance. The importance of web pages are evaluated by managers as linguistic terms, which are then transformed and averaged as fuzzy sets of weights. Each linguistic term is then weighted by the importance for its page. Only the linguistic term with the maximum cardinality for a page is chosen in later mining processes, thus reducing the time complexity. The minimum support is set linguistic, which is more natural and understandable for human beings. An example is given to clearly illustrate the proposed approach.
منابع مشابه
A top-down fuzzy cross-level Web-mining approach
Web mining of browsing patterns including simple sequential patterns and sequential patterns with browsing times has been studied recently. However, most of these works focus on mining browsing patterns of web pages directly. In this work, we introduce the problem of mining browsing patterns on cross-levels of a taxonomy comprised of web pages. In addition, browsing time is considered and proce...
متن کاملDiscovery of Fuzzy Multiple-Level Web Browsing Patterns
Web usage mining is the application of data mining techniques to discover usage patterns from web data. It can be used to better understand web usage and better serve the needs of rapidly growing web-based applications. Discovery of browsing patterns, page clusters, user clusters, association rules and usage statistics are some usage patterns in the web domain. Web mining of browsing patterns i...
متن کاملData Mining with Linguistic Thresholds
Data mining is the process of extracting desirable knowledge or interesting patterns from existing databases for specific purposes. In the past, the minimum supports and minimum confidences were set at numerical values. Linguistic minimum support and minimum confidence values are, however, more natural and understandable for human beings. This paper thus attempts to propose a new mining approac...
متن کاملFuzzy Weighted Data Mining from Quantitative Transactions with Linguistic Minimum Supports and Confidences
Data mining is the process of extracting desirable knowledge or interesting patterns from existing databases for specific purposes. Most conventional data-mining algorithms identify the relationships among transactions using binary values and set the minimum supports and minimum confidences at numerical values. Linguistic minimum support and minimum confidence values are, however, more natural ...
متن کاملMINING FUZZY TEMPORAL ITEMSETS WITHIN VARIOUS TIME INTERVALS IN QUANTITATIVE DATASETS
This research aims at proposing a new method for discovering frequent temporal itemsets in continuous subsets of a dataset with quantitative transactions. It is important to note that although these temporal itemsets may have relatively high textit{support} or occurrence within particular time intervals, they do not necessarily get similar textit{support} across the whole dataset, which makes i...
متن کامل